Inferential Statistics

Dr. K. A. Korb University of Jos

t-test

- t-test: Used when comparing two groups on a dependent variable
 - Independent samples: Two unique groups
 - Correlated samples: Groups are created by matched assignment or the same participants are compared on two variables
- Report the means and standard deviations for the two groups, the t, df, and two-tailed p

Steps in Inferential Analyses

• VassarStats:

http://faculty.vassar.edu/lowry/VassarStats.html

- In any inferential statistic, the first step is always to examine the p-value to determine if the result is significant
 - If not significant, analysis stops
 - If significant, then conduct post-hoc analyses if more than 2 groups are being compared
 - Examine descriptive statistics (mean, frequencies, correlation) to interpret the meaning of a significant result

t-test Example: Comparison of Christian (Group A) to Muslim (Group B) on

Number	01	Indumatic	Exper	iences

	А	В	Total
n	210	21	231
Σ×	58.1299999	7.68	65.8099999
ΣX^2	23.1461000	3.592	26.7381000
SS	7.0552	0.7833	7.9894
mean	0.2768	0.3657	0.2849

Results					
Meana-Meanb	t	df		one-tailed	0.0184115
-0.0889	-2.1	229	P	two-tailed	0.036823

of C De	L-I Christi egree	es an of	Grou (Grou Comr	xd ip/ nui	A) to hity	ף סו Su	I C Muslim upport	(Group B)
ata Su	ımmary							
	Α	A 208			т	ota	l	
n	208				229			
ΣX	137.049	999	14.9299	999	151.	979	999	
ΣX^2	106.401	699	12.2579	000	118.	659	599	
SS	16.100)2	1.643	1.6434 1 0.711 0		17.7953		
mean	0.658	9	0.71			663	7	
Results Mean _a —Mean -0.0521		_	t 0.81	d 22	f P		one-tailed	0.209394
	of C De hata Su n ΣX ΣX ² SS mean esults lean _a	t-l of Christi Degree Ata Summary A n 208 ΣX 137.049 ΣX^2 106.401 SS 16.100 mean 0.658 esults Teana-Meanb	t-less of Christian Degree of A Δ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ	$\begin{array}{c c} t-lest \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	t- Test Exaof Christian (Group ADegree of CommunABn20821 ΣX 137.04999914.9299999 ΣX^2 106.40169912.2579000SS16.10021.6434mean0.65880.711	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A B Total n 208 21 229 ΣX 137.049999 14.9299999 151.979 ΣX^2 106.401699 12.2579000 118.659 SS 16.1002 1.6434 17.795 mean 0.6589 0.711 0.663	$\begin{array}{c c} \textbf{t-Test Example} \\ \textbf{of Christian (Group A) to Muslim} \\ \textbf{Degree of Community Support} \\ \hline \\ $

	D					
(on Deg	gree of	comm	unity S	uppor	ι
Data Sum	mary					
			s	amples		
	1	2	3	4	5	Total
N	75	53	80			208
ΣX	50.97	35.65	50.43			137.05
Mean	0.6796	0.672642	0.63037	5		0.65889
ΣX ²	39.6067	27.4241	39.3709			106.401
Variance	0.067128	0.066239	0.09596	3		0.07777
Std.Dev.	0.259091	0.257369	0.30977	,		0.27888
Std.Err.	0.029917	0.035352	0.03463	•		0.01933
standard	weighted-m	eans analysis				
ANOVA S	immary Ii	ndependent Sa	amples k=3			
Source		SS	df	MS	F	Р
Treatmen [between g	t (proups]	.107239	2	0.053619	0.69	0.502737
Error	1	5.993007	205	0.078015		
Ce/Pl						Construction

Interpreting Factorial ANOVA

- Interaction Effect: The effect of one independent variable depends on the level of the other independent variable
- Main Effect: Comparison of each independent variable separately
 - Main effects are the same as t-tests or one-way ANOVAs for each independent variable separately

Interpreting Factorial ANOVA

- Examine the interaction first.
 - If significant, proceed by comparing each individual group via Tukey's HSD
 - Main effects are generally not examined, because main effects are superseded by the interaction
 - If the interaction is not significant, examine the main effects, which are interpreted just like a oneway ANOVA
 - Follow up significant results with Tukey's HSD
 - If nothing is significant, analysis stops.

3x2:	Gender by Christ	tian Denomir Support	nation on Cor	nmunity
	Pentecostal	Catholic	Mainline	Total
Female	0.63	0.69	0.75	0.69
Male	0.71	0.62	0.55	0.65
Total	0.68	0.67	0.63	

for the interaction at .05 significance.

Factorial ANOVA Example

3x2: Gender by Christian Denomination on PTSD Re-Experiencing

	Pentecostal	Catholic	Mainline	Total
Female	1.64	1.95	2.19	1.89
Male	1.60	1.60	1.94	1.71
Total	1.62	1.80	2.01	

Main effect of column was significant. Tukey's HSD was 0.26 for the row at .05 significance.

Analysis of Covariance (ANCOVA) ANCOVA: Compares post-test scores with pre-test scores factored out Concomitant variable (CV) is the variable that should be controlled for (e.g., pre-test) Observed Means: Actual means for the dependent variable

 Adjusted Means: Means that have been statistically manipulated based on the concomitant variable (pre-test)
 Report both the Observed and Adjusted Means as well

(post-test).

- as ANCOVA summary table
- Present any figures with the Adjusted Means with a note so that readers are clear that these are Adjusted Means.

Den	endent Variable		7			
Samp	le		-			
A	В	Total				
	n					
240 240		480			Group A: 0.2	nes 18
Ob	served Means				Group B: 1.7	24 24
1.3304	1.8107	1.5706				
Ad	justed Means					
1.8663	1.2748	1.5706				
Aggregate Correl	ation within Sar	mples: CV	vs DV			
r = 0.53	r ² =	0.28				
ANCOVA Summa	ry					
Source	SS	df	MS	F	Р	
adjusted means	17.12	1	17.12	33.58	<.0001	
adjusted error	243.16	477	0.51			

Correlation: Examine the relationship between two variables within the same group of participants Examine the p to determine if the correlation is significant If this is significant, then the next step is to look at the correlation itself, symbolized by r. Report the means and standard deviations for the two variables, the t, df, two-tailed p, and r

Dr. K. A. Korb PSY 801, University of Jos

Dr. K. A. Korb PSY 801, University of Jos

		Exp	ibe erie	r of Trau encing S	imatic Exp ymptoms	periences and PTSI	D Re
D	ata Sumn	nary					
	Σ × =	68.63	$\Sigma X^2 =$		28.0123		
	<u>Σ</u> Y =	435.3		$\Sigma Y^2 =$	991.5978		
3	ΣXY =	132.87					
		x		Y			
	N		242				
	Mean	0.2836		1.7988			
v	ariance	0.0355		0.8655			
s	td.Dev.	0.1883		0.9303			
:	Std.Err.	0.0121		0.0598			
	r	r ²		Slope	Y Intercept	Std. Err. of Estimate	
	0.2231	0.0498		1.101987	1.486276	0.9088	
	t	df		one-tailed	0.0002315		
	3.55	240	P	two-tailed	0.000463		

h nerm	CELLA	20			/ \ / / \ / / / / / / / / / / / / / /
		0-		gree or c	ommu
Data Sum	mary				
$\Sigma X =$	156.1	L	$\Sigma X^2 =$	121.9003	
<u>Σ</u> Y =	5428		$\Sigma Y^2 =$	128784	
Σ XY =	3641.0	6			
	х		Y		
N		233	3		
Mean	0.67		23.2961		
Variance	0.0746		10.0542		
Std.Dev.	0.2731		3.1708		
Std.Err.	0.0179		0.2077		
r	r ²		Slope	Y Intercept	Std. Err. of Estimate
0.0214	0.0005	5	0.24846	23.129632	3.177
t	df		one-tailed	0.3708495	
0.33	231	P	two-tailed	0 741699	

iship be	etween	Ρ	SD Arou	sal Symp	otoms and	Academ
Ach	ieveme	nt	NOTE:	Data is fa	abricated	
Data Sum	mary					
$\Sigma X =$	421.25		$\Sigma X^2 =$	902.3475		
<u>Σ</u> Y =	12532		$\Sigma Y^2 =$	668964		
<u>Σ</u> XY =	20773.1	5				
	×		V			
N	^	24	,			
IN		242				
Mean	1.7407		51.7851			
Variance	0.7016		82.9578			
Std.Dev.	0.8376		9.1081			
Std.Err.	0.0538		0.5855			
r	r ²		Slope	Y Intercept	Estimate	
-0.5664	0.3208		-6.158946	62.505977	7.522	
t	df		one-tailed	<.0001		
-10.65	240	P	two-tailed	<.0001		

Dr. K. A. Korb PSY 801, University of Jos

		Chi-	Squ	uare	e Ex	amj	ole		
tical I	Party	Affilia	ation	by Gei	nder f	NOTE:	Data is	s fabrica	te
Sel	ect the r	umber of r	ows: 2	2 3 .	4 5	3			
Select	the num	ber of colu	mns: 2	2 3 .	4 5	2			
A1	B1 12	B2	B3	B4	B5	Totals 27			
A1	12	15				27			
A ₂	14	12				26			
A ₃	13	13				26			
A4									
A5									
Totals	39	40				79			
				Reset	Ca	lculate			
Chi-Sq	uare	df	P N	lo message	e for this	analysis.			
0.47	7	2 0	7906						